Description d'une première récolte française de *Psathyrella ichnusae* (Örstadius, Contu, E. Larsson & Vizzini) D. Deschuyteneer & P. Tanchaud

Récolte réalisée par P. Tanchaud, sur la commune de Yves en Charente-Maritime Coordonnées GPS : 46.036274 N 1.023901 W Habitat : sur sol plutôt sablonneux, boueux, dans un pré avec chevaux, parmi les débris herbacés, à côté de crottins ; chapeau : 9 mm pour le plus gros.

Description macroscopique

Chapeau mesurant 9 mm de diamètre pour l'exemplaire le plus développé, de forme conico-paraboloïde ne devenant pas plan convexe, non strié et dépourvu d'umbon, de teinte ocre brun foncé sur les jeunes exemplaires frais, devenant ocre chamois sur les exemplaires plus matures ; hygrophane, il décolore en ocre très pâle. Il est parsemé de fibrilles vélaires blanches éparses, prédominantes sur la moitié du chapeau proche de la marge, au niveau de laquelle elles forment un filet arachnéen, partiellement appendiculé.

Lames espacées à moyennement espacées, largement adnées, décurrentes par une dent, ocre brunâtre, dont l'arête fimbriée est blanche sur exsiccatum.

Stipe mesurant 30-40 x 1,5-3 mm, blanc teinté d'ocre ; apex pruineux, finement fibrilleux dans les 2/3 inférieurs.

Voile fibrilleux blanc dense qui, selon la description d'Örstadius (*op cit.*), relie la marge au stipe et recouvre le chapeau des sujets jeunes, persistant au niveau de la marge sur les exemplaires adultes.

Chair mince ; saveur et odeur sans particularités.

Spores mesurées au sommet du stipe N=30, Arithmetic mean Me of L × W: **8.14** × **4.97** μm, Arithmetic mean Me of Q: **1.64** Dimensions computed by quantile method with 80% confidence interval: L × W for 80% CI: (7.5-)**7.95-8.73**(-9) × (4-)**4.95-5.2**(-5.5) μm, Q for 80% CI: (**1.45**)**1.5** - **1.8**(2) ; de face oblongues, subcylindriques, parfois ovoïdes, légèrement à nettement amygdaliformes de profil, sub-opaques, brun-rouge dans l'ammoniaque à 10%, grisâtres dans la potasse à 5%, à net pore germinatif central conique ; (Örstadius 7,8-**8,3**-9,2 x 4,4-**4,6**-5 μm).

Basides 16-22 x 9-13 µm, clavées, tétrasporiques ; (Örstadius 18-20 x 8-9 µm).

KOH 5%

Scatter plot with 80% & 90% prediction interval ellipse:

= spores

= arithmetic mean

= median

---= 80% prediction interval ellipse

--= 90% prediction interval ellipse

Cheilocystides mesurant pour N=50: Arithmetic mean Me of L × W: 34.1 × 12.3 μm,

Dimensions computed by quantile method with 80% confidence interval: L × W for 80% CI: (24-)28.9-40(-45) × 10-15 μm.

Analogues aux pleurocystides, essentiellement clavées et utriformes mais aussi lagéniformes, avec alors un col bien développé à sommet ogi-val parfois subcapité ou nettement capité, à paroi fine et sporadiquement légèrement épaissie et teintée ; peu nombreuses à nombreuses, disséminées ou groupées sous forme de clusters ; (Örstadius 25-35 x 10-16 μm).

Cellules marginales (paracystides) clavées, à paroi souvent épaissie et teintée, peu nombreuses mais denses à proximité de la marge, les cheilocystides ayant tendance à disparaître à ce niveau.

= measured dimensions

- = arithmetic mean
- = median
- -= 80% prediction interval ellipse
- --= 90% prediction interval ellipse

Cheilocystides et cellules marginales (paracystides) à proximité de la marge du chapeau.

Cheilocystides dont la paroi est parfois modérément épaissie et pigmentée

Pleurocystides mesurant pour N=50

Arithmetic mean Me of L × W: **36.6** × **12.4** μ m;

Dimensions computed by quantile method with 80% confidence interval: L × W for 80% CI: (27-)32.8-40(-47) × (10-)10.9-14(-16) μm.

Essentiellement clavées et utriformes, parfois lagéniformes et subcapitées, nombreuses, hyalines, dont la paroi est souvent modérément épaissie et teintée, présentant parfois au sommet des granulations intracellulaires réfringentes ;

(Örstadius 32-48 x 10-18 μm).

Scatter plot with 80% & 90% prediction interval ellipse:

- = measured dimensions
- = arithmetic mean
- = median
- ---= 80% prediction interval ellipse
- --= 90% prediction interval ellipse

Pleurocystides dont la paroi est modérément épaissie et pigmentée

Caulocystides analogues aux pleurocystides et aux cheilocystides.

Pileipellis un hyménoderme, constitué de une à deux couches de cellules globuleuses et clavées, les hyphes de la trame piléique sont nettement pigmentées. **Voile** constitué d'hyphes cylindriques hyalines peu ramifiées, dont les extrémités sont peu ou pas dilatées.

Médiostrate nettement pigmentée brun-beige.

Boucles présentes entre autre au niveau des hyphes du stipe.

Caulocystides

voile

Pileipellis dans H₂O

Médiostrate

Psathyrella ichnuseae 2018-970-ALV16503 PAT 1 = 3D ok, 99% *Psathyrella ichnusae* (KC992911)

PAT_1_ITS_Psathyrella_ichnusae

GAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAATGAATAACTATGGTATTGGTTGTAGCTGGCTTTTAGGAGCATGTGCACACCTGCCATTCTTATCTTT CCACCTGTGCACTTAATGTAGGCCTGGATAACTCTCGCTTTCGAGCGGATGCAAGGATTGCTGTGTCAAAAGATCGGCTCTCTTTGAATTTCCAAGTCTATGTATCTTTACACACCCCAATTGTAT AATGGAGAATGTAGTCAATGGGCTTTCATGCCCATAAAACAAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAG AATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACTTCATCATTTTTTAAAAAAATTGTGTGAAGCTTGG ATATGGGGGGCTTGCAGAACATCTTGTAGTGTACTGCTCTCCTTAAATGAATTAGCAAGTTCAAACTGAGCTATATCTATGTGTGATAATTATCTACGCTATTGAGTGTGAACGCTTGCACTTGCTTCTA ACCGTCTGAAAAGACAATTTTTTGACAATTGACCTCAAATCAGGTAGG

Genbank Acession number/Version: MK129251.1

>PAT_1_LSU_Psathyrella_ichnusae

Genbank Acession number/Version: MK129250.1

Sequencing and phylogenetic analysis

DNA Extraction, Amplification and Sequencing of the fungus was performed by Alvalab (Oviedo, Spain). The phylogenetic analysis was done by Dieter Wächter (Thiersheim, Germany). The genomic DNA was extracted from dried fruiting bodies. Amplification of the ITS region was performed with the ITS4 primer [1]. The initial base calling was done with FinchTV [2]. The nucleotide sequence was checked manually for errors, as well as the base calling at unsafe regions (trails, low confidence scores, stutters and polymorphs) on the basis of existing sequences of the /Hydrophilae-clade by divergence matrix and corrected if necessary. In the present case only a trimming of the trails was necessary. The following molecular phylogenetic markers were used for the phylogenetic analysis: ITS1 (Internal Transcribed Spacer 1), 5.8S (5.8S rRNA Gene), ITS2 (Internal Transcribed Spacer 2), LSU (Large Subunit 28S rRNA Gen), β-tub (exons of the β-tubulin gene), ef-1α (exons of the ef-1α gene). The nucleotide sequences for the tree inference were taken from NCBI [3] and Unite [4] (essential ones of the /Hydrophilae-clade see Table 1). Region boundaries for the ITS- and LSU-region were carried out with ITSx [5] and HMMER [6] including the databases. As outgroup, the sequence sets of the most closely related clades of the Ingroup were used, i.e. the /pygmaea down to the /gordonii clade. Due to the rapidly evolving, indel-rich areas of the ITS region, it can only be aligned veridical by using an iterative multigene-guide tree. The initial alignment of the ITS region was performed with Mafft [7] using the FFT-NS-2 method. The initial alignment of the LSU gene was carried out using E-INS-i method. The indel matrices for the ITS and LSU regions were each coded with SeqState [8] using the SIC = "Simple Indel coding" [9] method. After each alignment step, an ML analysis with RAxML [10] (model: GTRCAT, refining under GTR+G for DNA, GTR2+G with acquisition bias correction according to Lewis [11] for indel partitions) was carried out and the resulting best tree was used as a guide tree for the refinement of the ITS1 and ITS2 MSA. The iterative alignments were done with Prank [12], whereby the switches -once and -uselogs were set. Tracing values were recorded, evaluated statistically and thus the end of the iteration loop of the alignment was determined. The partitioning of all alignments and the indel matrices as well as the model selection for the DNA alignments was done with Partitionfinder [13]. For the final partitioning, the guide tree of the last iteration step was used. As information criterion the Bayesian Information Criterion (BIC) [14] used was after comparison with the Corrected Akaike Information Criterion (AICc) [15] and evaluation with respect to over- or underpartitioning. The partitioning scheme of the final phylogeny was:

•DNA-partition 1: ITS1 + ITS2

•DNA-partition 2: LSU

```
•DNA-partition 3: 5.8S + \beta-tub-Codon 1 + \beta-tub-Codon 2
```

•DNA-partition 4: β-tub-Codon 3 + ef-1α-Codon 3

•DNA-partition 5: ef-1α-Codon 1

•DNA-partition 6: ef-1α-Codon 2

•Binary partition (gap matrices): ITS1 + ITS2 + LSU

The final maximum likelihood analysis was done with RAxML 8.2.10 [10]. For all DNA partitions, the GTR substitution matrix [16] under the CAT model [10] was used. The final optimization took place under gamma distribution [10]. For the binary partitions, the "Two State Time-Reversible Model" with acquisition bias correction [11] was used. 1000 ML bootstrap inferences were calculated. Of these, 1000 trees were sampled and the best tree was labeled with the ML bootstrap support values and collapsed to the ML bootstrap value of 50%. The phylogram in Fig 1 was edited with Treegraph [17]. The upper Psathyrella clades (/noli-tangere to /fibrillosa) has been collapsed for a better representation.

Genbank Acession number/Version: 2018-970-ALV16503 PAT 1 – ITS : MK129251.1 2018-970-ALV16503 PAT 1 – LSU : MK129250.1 Arbre phylogénétique réalisé par Dieter Wächter montrant la corres-pondance à 100% de notre récolte avec la récolte de l'holotype de M. Contu, et sa position dans le clade *Ichnusae*, premier clade de la section *Pennata*e.

Fig 1 50% collapsed maximum likelihood consensus phylogram. The values on the branches are ML bootstrap values. Abbreviations: I: ITS region, L: LSU region, B: β-tubulin region, A: ef-1α region. The green number is the longest path length of the triangle collapsed clade.

Table 1 List of relevant sequences used in this publication

Species	Voucher	ITS	LSU	β-Tub	ef-1a	
Psathyrella cf. friesii	WU20344	AM712257.1	AM712257.1			
Psathyrella dicrani	LO270-04	DQ389698.1	DQ389698.1	KJ664885.1	KJ732797.1	
Psathyrella fimiseda	LO56-96	DQ389690.1	DQ389690.1			
Psathyrella friesii	BRNM705638	AM712253.1	AM712253.1			
Psathyrella hirta	H6008360	UDB021153				
Psathyrella hirta	LO142-00	DQ389702.1	DQ389702.1		KJ732800.1	
Psathyrella hololanigera	Hausknecht071109	KC992908.1	KC992908.1		KJ732794.1	
Psathyrella ichnusae	Contu080106	KC992911.1	KC992911.1		KJ732795.1	
Psathyrella impexa	DD6467	MK139963.1	-			
Psathyrella impexa	LO162-03	KC992901.1	KC992901.1	KJ664878.1	KJ732789.1	
Psathyrella impexa	LO78-93	KC992900.1	KC992900.1			
Psathyrella impexa	SAV 7-June-2002	AM712256.1	AM712256.1			
Psathyrella kitsiana	LO217-85	DQ389689.1				
Psathyrella laricina	Smith64604	KC992914.1				
Psathyrella madida	LO369-06	KC992933.1	KC992933.1	KJ664907.1	KJ732819.1	
Psathyrella merdicola	LO45-02	DQ389688.1	DQ389688.1		KJ732798.1	
Psathyrella orbicularis	LO210-04	KC992898.1	KC992898.1		KJ732787.1	
Psathyrella orbicularis	LO211-04	DQ389692.1	DQ389692.1		KJ732788.1	
Psathyrella orbicularis	LO149-11	KC992897.1	KC992897.1		KJ732786.1	
Psathyrella parva	LO81-95	KC992913.1				
Psathyrella parva	LO23-08	KC992912.1	KC992912.1	KJ664884.1	KJ732796.1	
Psathyrella pseudocasca	LO17-04	DQ389691.1	DQ389691.1		KJ732799.1	
Psathyrella pseudocasca	AM1241	MK045332.1				
Psathyrella pseudocasca	ALV12764	MG050094.1				
Psathyrella sacchariolens	H6038504	UDB021184				
Psathyrella sacchariolens	SZMC-NL-3995	FN396133.1	FN396182.1	FN396331.1	FN396233.	
Psathyrella scanica	LO183-09	KC992910.1	KC992910.1		KJ732793.1	
Psathyrella scatophila	LO64-95	DQ389703.1	DQ389703.1	KJ664896.1		
Psathyrella seymourensis	LO42-87	KC992915.1				
Psathyrella seymourensis	AM1733	MK045661.1				
Psathyrella siccophila	LO417-06	KC992916.1	KC992916.1	KJ664887.1		
Psathyrella sp.	HHJAU37819	MG367201.1				
Psathyrella sp.	HHJAU37817	MG367199.1				
Psathyrella sp.	HHJAU37818	MG367200.1				
Psathyrella sp.	H6038524	UDB021204				
Psathyrella sp.	H6008154	UDB021142				
Psathyrella sp.	Contu071230	KC992909.1	KC992909.1	KJ664883.1	KJ732792.1	
Psathyrella squamosa	LO194-96	KC992940.1	KC992940.1			
Psathyrella squamosa	H6036901	UDB021164				
Psathyrella squamosa	LO164-96	KC992939.1	KC992939.1			
Psathyrella squamosa	LO104-95	DQ389687.1	DQ389687.1			
Psathyrella squamosa	HMJAU 35923	MG734729.1				
Psathyrella squamosa	HMJAU37816	MG367206.1				
Psathyrella stigmatospora	H6038550	UDB021227				
Psathyrella suavissima	LO4-87	KC992899.1	KC992899.1	KJ664877.1		
Psathyrella umbrina	SZMC-NL-1949	FM878004.1		FN396326.1	FM897226.	
Psathyrella umbrina	H6036902	UDB021165				
Psathyrella umbrina	H6038523	UDB021203				
Psathyrella umbrina	LO235-04	DQ389697.1	DQ389697.1	KJ664886.1		
Uncultured fungus	IU-FSC Fun34 FuA031	AB520431.1	AB520431.1			
Uncultured fungus	112 NA7 P32 J14	KF297196.1	KF297196.1			

References

White TJ, Bruns T, Lee L, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: InnisMA, GelfandDH, Sininski JJ,White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, New York, pp 315–322 Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625-634

FinchTV 1.4.0: Geospiza, Inc.; Seattle, WA, USA; http://www.geospiza.com

NCBI: National Center for Biotechnology Information, U.S. National Library of Medicine 8600 Rockville Pike, Bethesda MD, 20894 USA - https://www.ncbi.nlm.nih.gov/

Unite: Köljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiß M, Larsson K-H. 2013. Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology, DOI: 10.1111/mec.12481

ITSx 1.1b: JOHAN BENGTSSON-PALME 2012-2017; Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for use in environmental sequencing. JOHAN BENGTSSON-PALME, VILMAR VELDRE, MARTIN RYBERG, MARTIN HARTMANN, SARA BRANCO, ZHENG WANG, ANNA GODHE, YANN BERTRAND, PIERRE DE WIT, MARISOL SANCHEZ, INGO EBERSBERGER, KEMAL SANLI, FILIPE DE SOUZA, ERIK KRISTIANSSON, KESSY ABARENKOV, K. MARTIN ERIKSSON, R. HENRIK NILSSON: Methods in Ecology and Evolution, 4: 914-919, 2013 - (DOI: 10.1111/2041-210X.12073) HMMER 3.1b2 (February 2015): http://hmmer.org/ - Copyright (C) 2015 Howard Hughes Medical Institute. Freely distributed under the GNU General Public License (GPLv3)

Mafft 7.372 (used over mafft.cbrc.jp)

- Nакамика, Yaмada, Tomii, Katoh 2018 (Bioinformatics 34:2490–2492) Parallelization of MAFFT for large-scale multiple sequence alignments.
- Катон, Rozewicki, Yamada 2017 (Briefings in Bioinformatics, in press) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.
- YAMADA, TOMII, KATOH 2016 (Bioinformatics 32:3246-3251) additional information Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees.
- KATOH, STANDLEY 2016 (Bioinformatics 32:1933-1942) A simple method to control over-alignment in the MAFFT multiple sequence alignment program.
- KATOH, STANDLEY 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
- KURAKU, ZMASEK, NISHIMURA, KATOH 2013 (Nucleic Acids Research 41:W22-W28) a Leaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity.
- KATOH, FRITH 2012 (Bioinformatics 28:3144-3146) Adding unaligned sequences into an existing alignment using MAFFT and LAST.
- Катон, Тон 2010 (Bioinformatics 26:1899-1900) Parallelization of the MAFFT multiple sequence alignment program.
- KATOH, ASIMENOS, TOH 2009 (Methods in Molecular Biology 537:39-64) Multiple Alignment of DNA Sequences with MAFFT. In Bioinformatics for DNA Sequence Analysis edited by D. Posada
- KATCH, TCH 2008 (BMC Bioinformatics 9:212) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework.
- Катон, Тон 2008 (Briefings in Bioinformatics 9:286-298) Recent developments in the MAFFT multiple sequence alignment program.
- Катон, Тон 2007 (Bioinformatics 23:372-374) Errata PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences.
- Катон, Кима, Тон, Міхата 2005 (Nucleic Acids Res. 33:511-518) MAFFT version 5: improvement in accuracy of multiple sequence alignment.
- KATOH, MISAWA, KUMA, MIYATA 2002 (Nucleic Acids Res. 30:3059-3066) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.

SeqState 1.4.1: MÜLLER, K (2005), SeqState - primer design and sequence statistics for phylogenetic DNA data sets. Applied Bioinformatics, 4, 65-69

SIC (Simple Indel Coding): SIMMONS MP AND OCHOTERENA H (2000): Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49: 369–381

RAxML Version 8.2.10: A. STAMATAKIS: "RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies". In Bioinformatics, 2014, open access link:

http://bioinformatics.oxfordjournals.org/content/early/2014/01/21/bioinformatics.btu033.abstract?keytype=ref&ijkey=VTEqgUJYCDcf0kP

Two parameter model & Acquisition Bias Correction: PAUL O. LEWIS: A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data - Systematic Biology, Volume 50, Issue 6, 1 November 2001, Pages 913–925

Prank 140603:

- LÖYTYNOJA A, GOLDMAN N: AN ALGORITHM FOR PROGRESSIVE MULTIPLE ALIGNMENT OF SEQUENCES WITH INSERTIONS. PROC NATL ACAD SCI USA 2005, 102: 10557–10562. 10.1073/PNAS.0409137102
- LÖYTYNOJA A, GOLDMAN N: A MODEL OF EVOLUTION AND STRUCTURE FOR MULTIPLE SEQUENCE ALIGNMENT. PHILOS TRANS R SOC LOND B BIOL SCI 2008, 363: 3913–3919. 10.1098/rstb.2008.0170
- PHYLOGENY-AWARE ALIGNMENT WITH PRANK (ARI LÖYTYNOJA), METHODS MOL BIOL. 2014;1079:155-70

Prank -F Option: LÖYTYNOJA A, GOLDMAN N: Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 2008, 320: 1632–1635. 10.1126/science.1158395 Partitionfinder 2.1.1:

- LANFEAR, R., FRANDSEN, P. B., WRIGHT, A. M., SENFELD, T., CALCOTT, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution formolecular and morphological phylogenetic analyses. Molecular biology and evolution. DOI: dx.doi.org/10.1093/molbev/msw260
- greedy algorithm used with Partitionfinder: LANFEAR, R., CALCOTT, B., Ho, S. Y., & GUINDON, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular biology and evolution, 29(6), 1695-1701
- Bayesian Information Criterion (BIC): SCHWARZ, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464

Corrected Akaike Informationskriterium (AICc):

- AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723
- HURVICH, C. AND TSAI, C. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307
- SUGIURA, N. (1978). Further analysis of the data by akaike's information criterion and the finite corrections. Communications in StatisticsTheory and Methods, A7, 13–26
- MARK J. BREWER, ADAM BUTLER, SUSAN L. COOKSLEY 2016- The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity
- BROWN, J.M., LEMMON, A.R. 2007 The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Syst. Biol. 56, 643–655

GTR-Model: TAVARÉ S. Some probabilistic and statistical problems in the analysis of DNA sequences, Lectures on mathematics in the life sciences, vol. Volume 17 Providence (RI) American Mathematical Society

Treegraph 2.14.0-771 beta: STOVER B C, MÜLLER K F: TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 2010, 11:7 - DOI: 10.1186/1471-2105-11-7

Discussion

A notre connaissance, il n'existe qu'une seule récolte décrite de cette espèce, à savoir celle réalisée en 2008 par M. Contu en Sardaigne, dans la province d'Olbia-Tempio (Golfo di Marinella) (op cit.)

L'holotype ayant été récolté dans une prairie côtière sur sol brûlé, cette espèce était considérée comme étant liée à cet habitat particulier. A la lumière de notre récolte réalisée dans une prairie partiellement sablonneuse pâturée par des chevaux, il semble bien que son habitat soit plus large, ce qui reste toutefois à préciser lorsque davantage de récoltes auront été recensées. Cette espèce semble néanmoins affectionner les sols plutôt sablonneux tout comme *Psathyrella arenosa* qui lui est macroscopiquement fort proche.

Psathyrella ichnusae et P. arenosa sont deux petites espèces qui ne peuvent être différenciées macroscopiquement que sur base de caractères peu évidents, parfois subjectifs, et dépendant des conditions climatiques.

Retenons toutefois, sur base des descriptions d'Örstadius (op.cit), que Psathyrella ichnusae a le chapeau moins coloré, plus ocre brun que rouge-brun et contrairement à Psathyella arenosa, n'a pas de propension à devenir plan-convexe au cours de la croissance. Le caractère le plus distinctif semble bien être l'abondance du voile de Psathyrella ichnusae formant un filet arachnéen blanchâtre persistant au niveau de la marge, alors que le voile de Psathyrella arenosa est peu développé et très volatile.

Sur le plan **microscopique**, Örstadius note que ces deux espèces présentent certaines caractéristiques qui permettent cependant de les différencier. En particulier, cet auteur indique que les cystides de *P. arenosa* sont nettement plus étroites, plus lagéniformes et que leur paroi n'est pas épaissie. Ceci est cependant à relativiser à la lumière d'une récolte séquencée de *Psathyrella arenosa* réalisée par M. Broussal *(op.cit)*, car dans cette récolte, les pleuros et les cheilocystides sont utriformes et clavées, et non pas lagéniformes, et présentent également une paroi modérément épaissie et teintée.

A titre de comparaison, nous présentons ci-après sous certaines réserves, une récolte de *Psathyrella* cf. *arenosa* réalisée par P. Tanchaud, présentant tous les caractères de cette espèce, mais dont l'identification formelle n'a pu être confirmée par le séquençage ADN, qui a échoué faute de matériel suffisant.

Pleurocystides de cette récolte de P. cf. arenosa.

Psathyrella cf. *arenosa* - Patrice Tanchaud - Charente maritime (France)

	Spores		Cheilocystides		Cheilocy	Cheilocystides2		Pleurocystides		Pleurocystides2	
1	7,5	5	20	15	35	15	30	15	27	13	
2	7,5	5	28	11	32	13	31	11	29	14	
3	7,5	5	29	11	29	14	33	10	29	11	
4	8	5	30	12	33	12	33	14	33	11	
5	8	5	30	12	31	10	34	13	34	14	
6	8	5	30	14	30	14	34	14	34	12	
7	8	4,5	30	12	30	13	34	13	34	15	
8	8	5	30	10	38	12	35	10	35	12	
9	8	5,2	30	14	26	12	35	12	35	13	
10	8	5	31	12	29	15	35	12	36	14	
11	8	5	32	11	29	12	35	11	37	11	
12	8	5	32	11	37	12	35	10	37	13	
13	8	5	33	12	35	13	36	15	38	14	
14	8	5	33	10	40	13	36	11	38	12	
15	8	5	35	12	37	15	37	13	38	12	
16	8	5	35	10	28	13	37	11	38	14	
17	8	5,5	35	15	28	15	38	12	38	12	
18	8	5	36	10	39	11	38	10	40	14	
19	8	4	37	13	33	13	38	9	40	11	
20	8	5,2	37	11	40	14	40	12	40	14	
21	8	5	38	10			40	11			
22	8,2	5	39	11			40	13			
23	8,3	4,5	39	11			40	12			
24	8,5	5,2	40	10			40	12			
25	8,5	5	40	11			40	12			
26	8,5	5	40	12			40	13			
27	8,7	5	40	14			42	11			
28	9	5	43	21			42	13			
29	9	5	45	12			44	16			
30	9	5	45	15			47	14			

Remerciements

à Micheline Broussal, qui nous a confié un exsiccatum de sa récolte de Psathyrella arenosa;

à Pablo Alvarado Garcia, pour le séquençage de l'ADN ribosomal (fractions ITS & LSU);

à Dieter Wächter, pour l'analyse des séquences de l'ADN et la réalisation de l'arbre phylogénétique ;

à Marcel Lecomte, pour la relecture sur le plan de la forme de cet article.

Bibliographie

Micheline Broussal, (2016) - Quelques champignons rares récoltés près du col du mont Cenis (Savoie). Bull. mycol. bot. Dauphiné-Savoie, n° 221, pp. 53-62.

Leif Örstadius, Martin Ryberg, Ellen Larsson, Mycol. Progress (2015) - Molecular phylogenetics and taxonomy in Psathyrellaceae (Agaricales) with focus on psathyrelloid species: introduction of three new genera and 18 new species. 14:25; pp. 29-42.

Adresses des auteurs

Deschuyteneer Daniel, spreeuwenhoek 12 1820 Perk - Belgique Tanchaud Patrice, 2 rue des Espics 17250 Soulignonne - France

danieldeschuyteneer@gmail.com patrice.tanchaud@gmail.com